MTH 512, Spring 2023, 1-1

MTH 512, Final Exam

Ayman Badawi

QUESTION 1. (Construct new inner products on \mathbb{R}^n) Let $n \ge 2$ and $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation (*R*-homomorphism) that is one - to - one, and hence $m \ge n$. Define a new inner product on \mathbb{R}^n , denoted by $\langle x, y \rangle_N$, such that $\langle x, y \rangle_N = T(x) \cdot T(y)$ for every $x, y \in \mathbb{R}^n$, where \cdot is the normal dot product on \mathbb{R}^m . Prove that \langle , \rangle_N is an inner product on \mathbb{R}^n , i.e., show that \langle , \rangle satisfies the axioms of the inner product space. [interesting... since if n = m and T is the identity linear transformation, then \langle , \rangle_N is just the normal dot product on \mathbb{R}^n .]

QUESTION 2. Let $a_1, ..., a_n$ be nonzero real numbers for some $n \ge 2$. Prove that

$$n \le \sqrt{\sum_{i=1}^{n} a_i^2 \sum_{k=1}^{n} a_k^{-2}}$$

QUESTION 3. Let A be a symmetric 4×4 matrix such that 1, -1 are the only eigenvalues of A.

- (i) Find all possible rational forms of A
- (ii) Evaluate $A^{2023} A^{2021} + A^{2020} A^{2018} + 7I_A$
- (iii) Convince me that $A^{-1} = A$.

QUESTION 4. Let A be a 7 × 7 matrix such that $m_A(\alpha) = (\alpha - 2)^3 (\alpha - 5)^2$. Assume $dim(E_2(A)) = 2$.

- (i) Find all possible Jordan forms of A.
- (ii) For each possible Jordan form, find $dim(E_5(A))$, $dim(G E_5(A))$, and $dim(G E_2(A))$
- (iii) For each Jordan form in (i), find the corresponding rational form.
- **OUESTION 5.** (i) Let V and W be inner product vector spaces over R and $T: V \to W$ be a linear transformation. Then the adjoint operator $T^a: W \to V$ is a linear transformation. Prove that $Ker(T^a) = Range(T)^{\perp}$. [hint : show $Ker(T^a) \subseteq Range(T)^{\perp}$ and $Range(T)^{\perp} \subseteq Ker(T^a)$. Maybe somewhere you need to notice that if $w \in W$, then $T^a(w) \in V$ and hence $\langle T(T^a(w)), w \rangle_W = \langle T^a(w), T^a(w) \rangle_V$
- (ii) Let <, > be the normal dot product on \mathbb{R}^n and $T: \mathbb{R}^3 \to \mathbb{R}^4$ be a linear transformation such that $\mathbb{R}^{ange}(T) =$ $span\{(1, 1, 0, 1), (-1, -1, 1, 1)\}$. Find a basis for $Ker(T^a)$. [hint : use (i)]
- (iii) Let \langle , \rangle be the normal dot product on \mathbb{R}^k and $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then F = $T \circ T^a : R^m \to R^m$ is a linear transformation. Prove that there are distinct real numbers $a_1, ..., a_k$ such that $m_F(\alpha) = (\alpha - a_1) \cdots (\alpha - a_k)$

QUESTION 6. Let \langle , \rangle be the normal dot product on R^k and $A = \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ -1 & -1 \end{bmatrix}$. Then $A\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$ is

inconsistent. Find the best solution to the system.

QUESTION 7. Given that a matrix A is similar to J, where $J = J_1(3) \oplus J_1(3) \oplus J_2(3) \oplus J_2(4) \oplus J_5(4)$

- (i) Find $m_A(\alpha)$.
- (ii) Find the rational form of A. [write it as $C() \oplus \cdots \oplus C()$]
- (iii) For each eigenvalue a of A, find $dim(E_a(A))$ and $dim(G E_a(A))$.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com

Eulstion 1: T: IR -> IR a LT. $|et < : Z_N : \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}$ $\langle v, y \rangle = T(n) \cdot T(y)$ we show that Z, ZN is an inner froduct on IR? H NER $\overline{J}. \quad \left< n, n, n = T(n) \cdot T(n) = T(n) > 0$ since T is injective Kar(T)=] of $H_{ret} T(n) = O_{R} i f (n = O_{R})$ Hence $\langle n, n \rangle = 0$ if $\int \frac{1}{\sqrt{2}} = 0$ 2) $\langle n+y, 27 \rangle = T(n+y) \cdot T(2) = [T(n+T(y)]) \cdot T(2)$ cince this the normal dot product T(2) distributes $\int T(x) \mod T(y)$ $= T(x) \operatorname{cn} dT(y) + T(y) \cdot T(z) = \langle x, 2 \rangle + \langle y, 2 \rangle$ $= T(x) \cdot T(z) + T(y) \cdot T(z) = \langle x, 2 \rangle + \langle y, 2 \rangle$ 3). $(dn, y7 = xT(n) \cdot T(y) = x(T(x) \cdot T(y)) = x(n, y7)$ 4). (n.y7 = T(n) - T(y) = T(y) - T(n) = Lyin 7 wring properties of dot product and properties of it 2, 7N is minner product on IR

Question d: let
$$a_{1}$$
, $-a_{1}$ be non 20% real numbers for some $n \ge 2$
Fible that $n \le \sqrt{\sum_{i=1}^{n} a_{i}^{2}} \frac{3}{k=1} \frac{a_{i}^{-2}}{k}$
We know from $ex = 1$ that
 $\left|\sum_{i=1}^{n} a_{i} b_{i}\right| \le \sqrt{\sum_{i=1}^{n} a_{i}^{2}} \frac{3}{i=1} b_{i}^{2}$
let $b_{i} = a_{i}^{2}$ $\forall 1 \le 1 \le \sqrt{\sum_{i=1}^{n} a_{i}^{2}} \frac{3}{i=1} (a_{i}^{2})^{2}$
 $\left|\sum_{i=1}^{n} a_{i} (a_{i}^{-1})_{i}\right| = n \le \sqrt{\sum_{i=1}^{n} a_{i}^{2}} \frac{3}{i=1} (a_{i}^{2})^{2}$
 $n \le \sqrt{\sum_{i=1}^{n} a_{i}^{2}} \frac{3}{i=1} a_{i}^{2}$

 $\langle \rangle$

$$\begin{aligned} \underbrace{\operatorname{Auxthon} 4:}_{\operatorname{dim}} (A, \exists x \exists & \operatorname{m}_{A} (a \models [a - 2]^{T} (a - 5]^{T}) \\ \operatorname{dim}_{C} (E_{2}(A)) = 2 \\ i & \operatorname{dim}_{2} (E_{2}(A)) = (a - 2)^{3} (a - 5)^{2} (a - 2)^{T} \\ A \approx \int_{2} [(B) \oplus \int_{3} (2) \oplus \int_{3} (2) \oplus \int_{3} (2) \oplus \int_{4} (3 - 5)^{2} (a - 2)(a - 5)^{T} \\ A \approx \int_{4} (2) \oplus \int_{3} (2) \oplus \int_{5} (2) \oplus \int_{5} (2) \oplus \int_{2} (5) \\ A \approx \int_{5} (2) \oplus \int_{5} (2) \oplus \int_{5} (2) \oplus \int_{2} (5) \\ \operatorname{dim}_{1} (E_{5}(A)) = 1 \\ \operatorname{dim}_{1} (G - E_{5}(A)) = 2 \\ \operatorname{dim}_{1} (G - E_{5}(A)) = 5 \\ \operatorname{dim}_{1} (G - E_{5}(A)) = 5 \\ \operatorname{dim}_{1} (G - E_{5}(A)) = 3 \\ \operatorname{dim}_{1} (G - E_{5}(A)) = 3 \\ \operatorname{dim}_{1} (G - E_{2}(A)) = 4 \\ \operatorname$$

Question Si i) T:V \longrightarrow W 7º: W -> V = let w E Ker (T*) C W them T^a(W)= OV, let VEV W I T(V) H VEV particular W I T(V) H VEV particular Hence Multis a thogonal on the banis of Roye (T) $\langle T(v), W \rangle = \langle V, T^{*}(w) \rangle = 0$ this is we Range (T) () let we fange (T) win Kange T.
Hum with v you every vin Kange T. and I (W) $\in V$ so $\langle T(T(W)), W \rangle = 0 = \langle T^{\alpha}(W), T^{\alpha}(W) \rangle V$ Herce T(W) = Q). (2) $ker(T^{0}) = Range(T)^{1}$ Sª WE Kei (T°). from 1 and 2 we get

Que stion 5; ii). Range (F1) = Spen 3(2,2,0,2), (-1,-1,1))) Ra & $=) V_{4} = -V_{1} - V_{2}$ V+42+Vy=0 $V_{3} = -V_{4} + V_{1} + V_{2} = 2(V_{1} + V_{2})$ -V-V2+V3+V=0 $\left(f_{co}(e^{t}T)\right)^{+}$, $\left(\begin{array}{c}1\\0\\-1\end{array}\right)$, $\left(\begin{array}{c}2\\-1\end{array}\right)$, $\left(\begin{array}{c}2\\-1\end{array}\right)$, $\left(\begin{array}{c}1\\-1\end{array}\right)$, $\left(\begin{array}{c}1\\-1$ $K_{\text{A}}(T^{\circ}) = \left\{ (1, 0, 2, -1), (0, 1, 2, -1) \right\}^{\circ}$ iii). Now AAT is the standard matrix representation of F $\frac{1}{F(v)} = A A^{T}(v)$ (AAT) T = (A) T AT = AA T thus the (AAT) = (A) T AT = AA T thus then Ce (your drice is diagnolizable. Hen Ce my (F) is the product of linear factors i.e. $m_{\mathcal{F}}(x) = (\chi - \alpha_1)(\chi - \alpha_2) - (\chi - \alpha_k).$

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} 1 & 1 \\ -1 & 2 \\ -1 & -1 \end{array} \end{array} \end{array} \begin{bmatrix} \begin{array}{c} X_{i} \\ X_{2} \end{array} = \begin{bmatrix} \begin{array}{c} L \\ 2 \\ \end{array} \end{array}$ $A = A = \begin{bmatrix} z \\ z \\ z \end{bmatrix}$ $\begin{bmatrix} 1 & -1 & -1 \\ 1 & 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -2 & 2 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 & -1 \\ 2 & 1 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ 9 \\ 2 \end{bmatrix}$ $\begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2_1 \\ 2_1 \end{bmatrix}$ $\frac{1}{8}\begin{bmatrix}3 & -1\\-1 & 3\end{bmatrix}\begin{bmatrix}3 & -1\\-1 & 3\end{bmatrix}\begin{bmatrix}2\\-1 & 3\end{bmatrix}\begin{bmatrix}2\\-1\end{bmatrix}\begin{bmatrix}2\\-2\end{bmatrix}=\begin{bmatrix}2\\-1 & 3\end{bmatrix}\begin{bmatrix}-2\\-2\end{bmatrix}$ $\begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \frac{1}{8} \begin{bmatrix} -8 \\ 8 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$ He best solution is $\begin{bmatrix} x_{1} \\ y_{2} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

Question 7: $A \approx \int_{\Lambda} (3) \oplus \int_{\Lambda} (3) \oplus \int_{\Psi} (3) \oplus \int_{\Psi} (3) \oplus \int_{\Sigma} (4) \oplus$ $m_{A}(\alpha) = (\alpha - 3)^{4} (\alpha - 4)^{5}$ ċ). $C_{A}(\alpha) = (\chi - 3)^{4} (\alpha - 4)^{5} (\alpha - 3)^{2} (\alpha - 3)^{4} (\alpha - 4)^{2}$ ii). $|d|_{3} = m_{A}(x) = (x - 3)^{4} (x - 4)^{5}$ $\int_{2}^{2} \left(d - 4 \right)^{2} \left(d - 3 \right)^{2}$ $\int_{M} = \left(d^{-3} \right)$ $A \approx C\left((\alpha^{-3})^{4}(\alpha^{-4})^{5}\right) \oplus C\left((\alpha^{-1})^{2}(\alpha^{-3})^{4}\right) \oplus C\left((\alpha^{-3})^{5}\right).$ $dinn\left(E_3(A)\right) = 3$ ici). $\dim \left(G - E_3(A) \right) = 6$ dim $(E_{y}(A)) = 2$ dim $(G - E_y(H)) = 7$

 $\sqrt{}$